

Introduction to the Sampling World: technical and cost impacts...

Iteca Socadei in a few words...

- Iteca belonged to "Les Ciments Lafarge"
- More than 30 years of experience in the mineral industry
- Worldwide sales representative network
- More than 65 employees
- 3 divisions:
 - 4Cement division: process control (from sampling to analysis), kiln seals, ball sorting machine, etc.
 - 4Colour division: on-line colour measurement
 - Mine and Mineral Division:
 - \checkmark Sampling solutions
 - Equipments production (Kiln / Calciner seals, ball sorting machine)
 - ✓ Instrumentation (level detection & measurement, rotation, etc.)
 - \checkmark Truck / Train loading solutions

ITECA SOCADEI 445 Rue Denis Papin - Europôle de l'Arbois - 13100 Aix En Provence - France Tél : + 33 (0)4 42 97 77 00 - Fax : + 33 (0)4 42 97 77 33 - e-mail : <u>info@iteca.fr</u> - Web site : www.iteca.fr

Why sampling?

Process control

➡ optimization of the process

Reconciliation / Metal accounting

perfect knowledge of what is produced by each part of the plant (mine, crushing plant, beneficiation plant, etc...)

Quality control

- ➡ optimize the quality of final product
- ^Ѣ reduce the over-quality
- **Commercial sampling**
 - ➡ prevent the seller from any claims
 - prevent the buyer from any off-spec

« I have to control the quality of the product loaded in a 180 000 tons

iron ore ship... »

For a 62% Fe iron ore concentrate: ✓ at 86\$/dmt ≈ 15,48 M\$ ✓ at 100\$/dmt ≈ 18,00 M\$ ✓ at 120\$/dmt ≈ 21,60 M\$

« I don't want to pay any

penalty to my client!!!... »

What is the aim of sampling?

The aim of sampling is to get a *representative* quantity of product from a *lot*...

Lot: Quantity of product (usually large) of which you want to estimate one or several characteristics

- ✓ hourly, shift or daily production,
- ✓ complete ship,
- ✓ etc...

Representative: A sample is representative when it is *accurate* (*When each particle of the flow has the same probability to be taken by the sampling device*) and *reproducible*

Why sampling is not that easy?

heterogeneity

Segregation

- Front view -Particle size distribution

- Cross section -Particle size distribution

The kinetic energy creates segregation in the flow.

Because of heterogeneities of constitution and distribution,

we have to consider that a product or a flow

can not be homogeneous.

The theory of sampling of Pierre Gy

Pierre Gy's formula allows to predict the sampling precision for a probabilistic and bias free sample.

$\sigma^2 = \frac{C \cdot d^3}{M}$

With:

 σ^2 = variance of the fundamental sampling error

- C = mineral specific constant
- d = maximum particle size (d95 can be used)
- M = mass of the sample

A few rules to avoid bias

- The cutter must cut the entire stream of particles
- The cutter must move at constant speed through the stream and below 0,6 m/s
- The cutter blades must be straight and sharp to avoid any roll or slide of particles

The cutter must have sufficient capacity to hold the sample

Extract of « Investigation of Sample Cutter Operations » (CSIRO, Australia)

- Cutter aperture must be at least 3 times the nominal top size to avoid bridging of material over the cutter
- The cutter opening must be constant
- There must be no loss of material or contamination

Sampling bias can be far greater than analysis ones.

« On the primary sampling, bias can be up to 1 000 % and up to 50 % on the secondary sampling whereas they never exceed 0,1 to 1 % in analysis. » (Pierre Gy)

Sampling can be far more important than analysis!

Financial impacts are high!

Current price of iron ore concentrate at 62% Fe is around 95 \$/t

Example of an iron ore mine producing 10 Mt per year:

✓ 1%	bias 15,32	on M\$ / yea	Fe r !	5
✓ 1%	bias <mark>9,50 M</mark>	on \$ / year	moisture !	5

Example of iron ore sampling tower ISO 3082 compliant

Application:

- ✓ Product: Iron ore lumps with nominal top size of 31,5 mm
- ✓ Product Quality Variation (acc. ISO 3082): Large
- ✓ Lot: 8 hours
- ✓ Flow rate: 3000 t/h

According to ISO 3082-2009 (Iron ores - Sampling and sample preparation procedures):

- ✓ Cutter aperture of the sampler: 100 mm
- ✓ Cutter speed: 0,6 m/s
- $_{\pm}$ Mass of each primary cut: 140 Kg
- ✓ Number of primary cuts: 120 (1 cut every 4 minutes)
- π Mass of sample collected = 120 x 140 Kg = 16,8 tons! Too large for the lab!

It is necessary to carry out a fragmentation to decrease the mass of the sample without deteriorating its representativeness (i.e without decreasing its variance)

A Sampling process is often made of several stages of « collection of product » and « fragmentation »

Example of iron ore sampling tower ISO 3082 compliant

Primary Sampler

- ✓ Mass of 1 increment = 140 kg
- ✓ 1 increment every 4 minutes
- ✓ 120 increments
- _{■□} 16,8 t per 8 hours

Jaw Crusher

✓ Size in = 31,5 mm
✓ Size out = 8 mm

Secondary Sampler

- ✓ For dividing operation
- ✓ Final sample mass = 30 kg
- ✓ Frequency = every hour

Reduction in the number of increments: consequences...

Reference sampling standard: ISO 3082 Product: Iron ore lumps (< 31,5 mm) Lot = 8h (= 24 000 tons) N1 = number of primary increments Target overall precision given by ISO 3082: βSPM = 0,49 Measured Fe content for the lot: 62%

N1	βѕрм
120	0,49
60	0,67
30	0,92

 β SPM = overall precision

 β SPM = 2 σ SPM

 $\sigma^{2}SPM = \sigma^{2}S + \sigma^{2}P + \sigma^{2}M$

Example of bias and financial consequences

The iron grade of the large particles differs from the iron grade of the fine particles (for this example, let's say that the grade of the large particles is about 2% larger than the average for the entire stream of ore)

One single large particle wheighs about 74 g and each increment wheighs about 140 Kg

If 200 large particles (= 15 Kg) per primary cut (= 140 Kg) fail to be collected by the cutter then the bias on the grade is:

2% Fe x 200 x 74 / 140000 = <u>0,21% Fe</u>

Extract of « Investigation of sample Cutter operations » (CSIRO, Australia)

For an iron ore mine producing 10 Mt iron ore concentrate per year at 95 \$/dmt: 0,21 % bias on Fe = 3 217 742 \$ / year !

-

Example of bias and financial consequences

For a iron ore mine producing 10 Mt/year:

- ✓ Number of increments not compliant:
- ✓ Wrong design of cutter:

6,58 M\$ per year 3,22 M\$ per year

Total penalties: 9,80 M\$ per year!!!

Terminology

Sample taker: technical device for taking samples (with or without representativeness)

Sampler: technical solution designed in order to obtain representative samples

Examples of « sample takers »

Cross-belt: a special case?

Cross-belt Sample-taker (on a conveyor belt) – PBA

- Does not comply with Sampling Theory or International Sampling Standards
- Sometimes could be better than nothing !
- Heavy duty construction (wear resistant steel)
- Design of the cutter is made according to the product to be sampled

Sampler at conveyor belt discharge – EGTR

- Fully compliant with Sampling Theory and International Sampling Standards
- Very few place is needed thanks to the "Linear Rotary Bucket" principle (patented solution)
- Minimized increment mass (collection during a single travel of the bucket)
- Suitable for any type of mineral and solid bulk

Sampler in a vertical chute - PGR

ΙΤΈΓΑ

SOCADEI

- Fully compliant with Sampling Theory and International Sampling Standards
- Design of the cutter is made according to the product to be sampled
- Angle of extraction according to characteristics of the product to be sampled
- Continuous or intermittent sampling operation
- Heavy duty construction

Rotary plate divider

Sample storage

Sampling, Sample Preparation & Analysis

- Samplers
- Sampling tower
- Sample transport
- Sample preparation
- Automatic analysis
- Centralised laboratory

Sampler at the discharge of a conveyor belt

Cross-belt Sample taker

Divider

Sample storage

Semi-Automatic Mill & Press

Automatic Laboratory

Bibliography and acknowledgments

ISO sampling standards (ISO 3082:2009, ISO8656-1, ISO 4296-1, ISO 4296-2, ISO 8685, ISO 13909-2-2001, ISO 12743:2006, ...)

Pierre GY literature :

- (1979) Sampling of particulate materials, theory and practice
- (1992) Sampling of Heterogeneous and Dynamic Material Systems: Theories of Heterogeneity, Sampling and Homogenizing
- (1998) Sampling for Analytical Purposes
- CSIRO Division of Mineral and Process Engineering (Sampling Bulk Commodities – Design and operation of sample cutters)

Special thanks to Dr Ralph John HOLMES And M. André GEORGEAUX for their ideas and guidance

Thank you for your attention...

445 Rue Denis Papin – Europôle de l'Arbois – CS 30478 – 13592 – Aix En Provence Cedex 3 – France Tél : + 33 (0)4 42 97 77 00 - Fax : + 33 (0)4 42 97 77 33 e-mail : info@iteca.fr – Web site : www.iteca.fr